Robust methods of updating model and a priori threshold in speaker verification
نویسندگان
چکیده
We describe a method of updating a hidden Markov model (HMM) for speaker verification using a small amount of new data for each speaker. The HMM is updated by adapting the model parameters to the new data by maximum a posteriori (MAP) estimation. The initial values of the a priori parameters in MAP estimation are set using training speech used for first creating a speaker HMM. We also present a method of resetting the a priori threshold as the updating of the model proceeds. Evaluation of the performance of the two methods using 10 male speakers showed that the verification error rate was about 42% of that without updating.
منابع مشابه
Using Exciting and Spectral Envelope Information and Matrix Quantization for Improvement of the Speaker Verification Systems
Speaker verification from talking a few words of sentences has many applications. Many methods as DTW, HMM, VQ and MQ can be used for speaker verification. We applied MQ for its precise, reliable and robust performance with computational simplicity. We also used pitch frequency and log gain contour for further improvement of the system performance.
متن کاملUsing Exciting and Spectral Envelope Information and Matrix Quantization for Improvement of the Speaker Verification Systems
Speaker verification from talking a few words of sentences has many applications. Many methods as DTW, HMM, VQ and MQ can be used for speaker verification. We applied MQ for its precise, reliable and robust performance with computational simplicity. We also used pitch frequency and log gain contour for further improvement of the system performance.
متن کاملSpeaker verification using minimum verification error training
We propose a Minimum Verification Error (MVE) training scenario to design and adapt an HMM-based speaker verification system. By using the discriminative training paradigm, we show that customer and background models can be jointly estimated so that the expected number of verification errors (false accept and false reject) on the training corpus are minimized. An experimental evaluation of a fi...
متن کاملDetermination of threshold for speaker verification using speaker adaptation gain in likelihood during training
This paper describes methods to determine thresholds for speaker verification. Setting an appropriate threshold a priori is difficult because likelihood verification covers a wide range and the appropriate threshold for each speaker is different. We propose new methods to determine the speaker verification threshold depending on the "adaptation degree" for each speaker. We use the gain in likel...
متن کاملA priori threshold selection for fixed vocabulary speaker verification systems
A priori threshold selection is an important problem in practical speaker verification (SV) systems. Most earlier empirical methods for estimating prior thresholds assume availability of data from impostors i.e. speakers saying the same phrase as the desired speaker. While this is true for most databases available for research, it is not so in practice. In this paper, we present a novel prior t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996